
The reference implementation had a buffer overflow in the 
uart_readline function, so attackers could write arbitrarily large 
release messages to overwrite the saved link register and gain 
control of the program counter (see Figure 1). Several designs 
did not patch this vulnerability. For our exploit, we injected 
shellcode in place of a true release message, then hijacked the 
PC to return to the beginning of the message in flash. By 
carefully crafting our shellcode to avoid instructions and 
immediates with nulls or newlines, we had arbitrary code 
execution. To actually obtain the flags, our payload leveraged 
existing functions within the binary to dump the entirety of 
EEPROM to SRAM, then wrote it to UART for further 
processing offline. Since all cryptographic keys were stored in 
EEPROM, it was relatively trivial to decrypt the provided 
packages and forge malicious ones.

To mitigate this attack, implementers should add bounds 
checking to the uart_readline function. This can be done by 
passing the size of the buffer into the function, then checking 
the loop counter against the buffer size on every iteration. By 
exiting the loop if the counter exceeds the buffer size (taking 
special care to account for the null terminator), attackers are 
prevented from overflowing the buffer and hijacking control 
flow.

Alternatively, implementers could patch this vulnerability by 
doing away with null-terminated strings entirely and modifying 
the protocol to pass the length of the release message upfront. 
This would have the added benefit of allowing the bootloader to 
enforce stricter validation on the size of the release message 
ahead of time.

Defensive Highlight

ret2rev
Texas A&M University

Abhishek Bhattacharyya, Justin Block, Ryan Brasseaux, Cormac Cupples, Liam Haber, Danny 
Hernandez, Luke Loera, Emily Murphy, Nathan Nguyen, Mark Poveda, Bode Raymond, Lane Simmons, 

Anna Slater, Derek Viet, and Rohan Viswanathan

Advised by: Dr. Martin Carlisle, PhD

Our defensive highlight was our two-stage boot process. The 
first stage handled early peripheral initialization and decryption 
of the second stage in SRAM, which contained all critical logic. 
This ensured immutability of critical code during runtime. The 
second stage contained a decryption key to access the 
EEPROM keystore. After flash writes, the hash of the first stage 
was recomputed to ensure tampering had not occurred. In 
particular, if the flash trojan modified first stage bootloader 
code, the second stage would zeroize the second stage 
decryption key stored in EEPROM, which would brick the 
device.

This strategy was intended to mitigate the flash trojan and 
ensure all aspects of CIA triad were met. At-rest encryption 
used XChaCha20Poly1305, which has AEAD capabilities. This 
allowed us to ensure confidentiality and integrity of critical 
bootloader code. EEPROM was utilized as an encrypted 
keystore for signatures, hashes, nonces, and other metadata 
pertaining to installed images and device state.

Some flaws that may be present, but we have not tested, 
include:
● destructively overwriting the first stage and power cycling 

before the verification check
● binary patching critical return values in functions that we 

could not fit into SRAM (e.g. hashing and crypto functions)

Offensive Highlight

Design Overview

We utilized a two-stage bootloader, offloading critical 
functionality to SRAM to mitigate patching from the flash trojan. 
To communicate with the bootloader, each host-tool 
authenticated tself by signing a random challenge using 
ECDSA, with different signing keys for unprivileged and 
privileged functionality. Secure packages were created by 
accumulating package metadata, then signing and hashing 
each component. Components with confidentiality requirements 
were encrypted with XChaCha20Poly1305 to prevent IP 
disclosure and malicious tampering. This ensured all aspects of 
the CIA triad were met.

Figure 1: Buffer Overflow


