
Defensive Highlight

Cacti
University at Buffalo

Xi Tan, MD Armanuzzaman, Zheyuan Ma, Qiqing Huang
Advised by: Professor Ziming Zhao, Professor Hongxing Hu

Measure point: Data integrity
Reason: To prevent the firmware and configuration from
modifying by attackers.
Supposed defensive features: AES-GCM, EEPROM key
storage, and MPU access control.

Feature description:
AES-GCM is good to protect the files as it produces a tag along
with ciphertext, which ensures integrity and authenticity.
We divide the data into 4KB chunks (Figure 2). Each chunk of
4KB generates a tag, so there is a maximum of 16 tags for the
configuration file and a maximum of 4 tags for the firmware file.
For firmware files we do two separate encryptions, the first one
is encryption of firmware data, and the second is encryption of
generated tags and version number. The tag of the second
encryption will be put as plaintext in file format. Thus, the
bootloader can verify the integrity of firmware without waiting
for the whole encrypted ciphertext. For the configuration file,
there is only one encryption step, and the tags are plaintext.
Issue: i) we did not include any block sequence number, ii) our
AES-GCM library cannot prevent a side-channel attack, iii) we
did not authenticate the version number with valid ciphertext.

EEPROM is used for key and tag storage (Figure 1). IV storage
memory will not be accessible by the flash trojan.
Issue: some pieces of sensitive data (e.g. version number) are
stored on FLASH rather than EEPROM.

MPU is used to constrain the access rights of flash and SRAM.
Issue: when implementing, the result is not consistent with the
physical environment and emulator environment. Due to the
time, we did not spend much time fixing it.

Future plan: i) add sequence number for each cipher block; ii)
authenticate the version number ciphertext combined with file
ciphertext, iii) all sensitive data should store on EEPROM, iv)
figure out the right way to use MPU correctly, v) find appropriate
crypto libraries.

Design Overview
1. For integrity protection of the Firmware and Configuration files, we
implemented AES-GCM mode encryption with two different keys.
AES-GCM produces a tag along with ciphertext which ensures
authenticity. For Readback authentication we used asymmetric crypto.

2. We utilized the EEPROM hardware feature to store the keys at build
time. In addition, EEPROM memory is used to store the tags of
firmware and configuration, after each update and load operation.

References
AES-GCM RSA

Vulnerability: data integrity.
Case 1: Lack of integrity checking for whole data.

a. Attack: exchange chunks along with its tag

b. Defeat: add sequence number for each chunk and
integrity checking for all tags

tag_all = sig(tag1, …, tagn)

Case2: Same crypto key for firmware and configuration
protection and no integrity checking for generated signatures.

a. Attack: exchange ciphertext along with its signature

a. Defeat: Use different keys for different purposes
Case3: Non-cryptographic algorithm for configuration protection

a. Attack: decode directly
cfg_plaintext = base64.decode(cfg_cipher)

b. Defeat: use more secure crypto algorithm
e.g., cfg_cipher = AES.enc(cfg_plaintext)

Offensive Highlight

chunk1 tag1 chunk2 tag2

cfg_cipher cfg_sig fw_cipher fw_sig

cfg.prot fw.prot

chunk1 tag1 chunk2 tag2tag_all

https://github.com/mko-x/SharedAES-GCM
https://github.com/CFY-asus/RSA2048-1

