
One planned attack was intended to take advantage of the
flash hardware trojan. The attack, while not actually
implemented due to time constraints, was planned to make use
of the trojan to switch the clocking system of the
microcontroller. By changing the clock in use from the (default)
PLL to the external oscillator, an attacker could disrupt the
system by potentially causing it to skip certain steps and open
up major security vulnerabilities.

Another planned attack was the SCA differential power
analysis, where we would collect the leaked power output from
the bootloader and analyze the power consumption to find the
RSA key bits. To this, we came up with an algorithm that would
use a few different inputs to get traces, which would be aligned
together automatically. The part we were working on
implementing was trying to find the correct bits based on this
information received from the traces. Due to time constraints,
this was not fully implemented. This attack can be deterred by
having the channel emit lots of noise to mask the actual power
outputs. This would make it infeasible to try and break the RSA
key by DPA. Another fix would be to vary the internal clock
frequency of the device, which would also stop DPA.

The final planned attack was reverse engineering the binaries
of the firmware images to gain information about the various
IDs (Nav, Control, Altimeter, and Autopilot) needed to crash the
aircraft. To do this, we were going to dump the binaries and find
the IDs and use them to send false information to the autopilot
or hinder it from receiving information from the altimeter
entirely. We were planning on doing this either by giving a false
height value or shutdown the altimeter and stop the bus
controller from turning it back one. This attack can be fixed by
obfuscating the code either by making it complicated to read or
by encrypting the code to make it harder to read the binary.

Defensive Highlight

BatteringRAM
University of Connecticut

Michael Benevenuto, Zachary DiMeglio, Blake Fulton, Aniruddah Manikandan, Kevin Marquis, Kevin Romero
Advised by: Dr. John Chandy, PhD

The primary defense mechanism was a master key encryption
scheme. By using a master key encryption scheme, this
allowed us to use synchronous encryption algorithms and
reduce the overhead of the bootloader. A signature was
generated for a given dataset by hashing the data, encrypting
the derived hash, appending the signature key and encrypting
the entire block of data. This consumed 88 bytes of data and
allowed us to use any synchronous algorithm desired. To
minimize the design further, we chose the ARX cipher,
ChaCha20, to improve security and reduce the processing time
consumed to encrypt/decrypt data. Because
encryption/decryption utilize the same function, this reduced
the software overhead further.

The signature scheme worked, however securing our data was
a pitfall in our design. When loading the datakey from
EEPROM, the key remained on stack space no longer used
and could be viewed from GDB easily. To increase security, the
ChaCha20 initialization algorithm could interface directly with
the EEPROM instead of loading the data from stack memory,
as this would reduce the number of locations the key is stored
from two to one, and would ensure security as the initial key
data is mutated while generating cipher data.

Another vulnerability lied within the firmware booting process.
The bootloader decrypted the firmware into SRAM for
execution and verified the data using a signature loaded into
the device during the firmware update process. If the signature
was verified unsuccessfully, the faulty data remained in SRAM.
This gave a known encryption vector and could potentially
allow one to derive the secret key.

Offensive HighlightDesign Overview
The system functions with a master key encryption scheme. A
random and unique signature key is generated for each
signature. This signature key is used for encrypting the
SHA256 hash of the data to be signed. The signature key is
appended to this hash and encrypted with a master data key.

Three signatures need to be verified for the system to properly
boot. The metadata of the configuration and firmware, and the
unencrypted firmware itself.

