
Length Extension Attack:
In the attack phase, we tried attacking designs using a

length extension attack on readback configurations.[1] The
counter on one of the design’s was not completely random and
being initialized at 0. This counter was being concatenated as-
is with the message string, rather than being hashed and
concatenated. This made their encryption vulnerable to a
length extension attack, as they were only using SHA256
instead of HMAC-SHA256, which is not vulnerable to this
attack. Unfortunately, the attack was unsuccessful. The issue
was that while we understood the concept of the attack, we
couldn’t implement it before the end of the competition.
Countermeasure:

A proposed fix for their code would be to hash the counter
before concatenating it with the rest of the message. HMAC-
SHA256 is not vulnerable to the same type of length extension
attack, and thus would have made their design more secure.

Defensive Highlight

Mass Ruby
University of Massachusetts Amherst
Ryan Lee, Nathan Costa, Alon Trogan, Vihar Vasavada, Gilbert Hoermann

Advised by: Professor Wayne Burleson

Defensive feature:
The design implemented a chunk system for the firmware

and configuration files.
Goals of this feature:

By doing this, the design could load the files one chunk at a
time, without having to store the entire thing in memory. This
would enable the device to continue working, even if an
attacker attempted to upload an invalid file.
Results:

While this approach seemed to work well, a fatal flaw that
was discovered was chunk swapping. An attacker could swap
the first chunk of either the firmware or configuration files with
that of another file. While the design can prevent chunk
reordering, it cannot prevent chunk swapping between files.
Since the same key is used for firmware and configuration,
swapping the first chunk of different firmwares (which would
include their version numbers) would allow the attacker to
obtain the rollback flag.
Improvements:

To fix the above design flaw, there are a number of
solutions that we could have used: using a different key for
each firmware/config, computing a hash over the entire
firmware/config and verifying it (e.g. with a digital signature),
and including some kind of tag with each chunk that ties it to
the overall file. The first approach has its own issues, namely
that many AEAD algorithms (including ChaCha20-Poly1305) do
not commit to their keys and that we would need committing AE
to fully guarantee its security. The second approach is
something we considered but did not implement due to
performance issues, though we would have tried harder to get it
to work if we realized the importance of authenticating the
entire file. The third approach would not have performance
penalties, and it may be possible to use a mostly-shared nonce
as the tag.

Offensive Highlight

Design Overview
● Firmware and Configuration files stored and sent in roughly

1 KB encrypted chunks
● Bootloader implemented mostly in Rust while host tools

were written in Python
● Bootloader computes its own hash and uses it as part of

key derivation to detect Flash Trojan tampering
● Uses ChaCha20-Poly1305 AEAD[6] stream cipher instead

of AES-based scheme. Readback implemented with
HMAC-based challenge-response protocol.

References
1. https://github.com/marcelo140/length-extension
2. https://docs.rs/hmac/latest/hmac/
3. https://research.nccgroup.com/wp-content/uploads/2020/02/NCC-Group-Whitepaper-Microcontroller-Readback-Protection-1.pdf
4. https://docs.python.org/3/library/hmac.html
5. MAC and HMAC simply explained (with JavaScript snippets) | by Gonzalo Ruiz de Villa | gft-engineering | Medium
6. https://blog.cloudflare.com/it-takes-two-to-chacha-poly/

https://github.com/marcelo140/length-extension
https://docs.rs/hmac/latest/hmac/
https://research.nccgroup.com/wp-content/uploads/2020/02/NCC-Group-Whitepaper-Microcontroller-Readback-Protection-1.pdf
https://docs.python.org/3/library/hmac.html
https://medium.com/gft-engineering/mac-and-hmac-simply-explained-with-javascript-snippets-555e2bf82de8
https://blog.cloudflare.com/it-takes-two-to-chacha-poly/

