
Defensive Highlight

WildCerts
University of New Hampshire

Joshua Calzadillas

Advised by: Professor Qiaoyan Yu, PhD

This section should include:

1. The countermeasures that were implemented in my design 

were CRC32 checksums and a separate (custom) CRC32 

based hashing algorithm which took the inputs of several 

CRC32 values and outputted a separate hash values for 

that set of values. 

2. The other defense features were encryption and memory 

management. The encryption was used to make sure that 

the contents of the device were somewhat secure (not easily 

visible to be seen without some hard work). The memory 

management allowed the software to detect when certain 

parts of memory were being accessed or tampered with 

without the software giving consent. Which made the system 

even more secure by making it harder for the user to just 

substitute values as they please.

3. The system works however, there wasn’t enough time for 

the team to got the attack phase due to time constraints with 

other classes as well. However, there are enough resources 

used to apply this to other projects as well. (The team had to 

scrap a lot of work and try to ad-hoc our way through to get 

into the attack phase.)

4. How you could build upon this feature in the future to create 

an even more secure design Probably should put these 4 

things in the template so that it’s clear how we want them to 

be identified

1. The first thing I would do is implement the instruction-

based encryption system to make the system even more 

secure.

2. I would take out a lot of the fluff-based hashes and only 

do a few CRC32 checksum (only what is applicable) to 

save on memory resources.

3. I would also have several boot codes at which the 

bootloader would know when and how to boot (mostly 

hardware implemented codes) that can be managed by 

the device. 

4. I would also add noise to some of the functions to make 

it harder to do SCA due to random noise constraints 

being applied to remove some of the ease of 

accessibility and guess work for a side channel analysis 

to occur. 

Design Overview
This section could include the following:

1. The major design setup was integrating an encryption 

setup to encode the values of one firmware to another 

based on the booting process. 

2. The software features included instruction-based 

encryption (polymorphic encryption), CRC32 checksums, 

Blowfish encryption, AES encryption, and a memory 

management system.

3. However, the instruction-based encryption was removed 

due to time constraints. 

References

1. Professor Yu 2. Joshua Calzadillas

This section should include:

1. Most of the attack-phase attacks were not done due to the 

fact that we didn’t meet the attack phase during this eCTF. 

2. That being said, the team has learned an intangible amount 

of experience and information about securing an embedded 

system and it’s contents form all sorts of different attacks.

3. This CTF also allowed the team to learn how to use 

debuggers more effectively, how to reverse engineer an 

executable or a piece of firmware using Ghidra and strings. 

4. We also enjoyed the SCA and the RE segments of the CTF 

as well and the Boston Cybernetics Institute training that we 

received earlier in the competition.

5. Overall, this CTF was one of the team’s favorite CTF’s that 

we have ever participated in. 

6. Thank you for sponsoring this!

Offensive Highlight


