
During the attack phase, we utilized a combination of 

automated vulnerability detection, analysis of design 

documents, and verification of implementation.

Some teams had a vulnerable design even on paper, such as 

having a deployment-wide secret which we were able to extract 

from the fob0 or car0 devices.

Other designs looked good on paper, but had flaws in their 

implementation code, introducing vulnerabilities. For instance, 

we identified a buffer overflow vulnerability caused by reading 

unbounded data over UART. An example vulnerable function is 

shown below:

uint32_t uart_readline(uint32_t uart, uint8_t *buf) {

uint32_t read = 0; uint8_t c;

do {

c = (uint8_t)uart_readb(uart);

if ((c != '\r') && (c != '\n') && (c != 0xD)) {buf[read++] = c;}

} while ((c != '\n') && (c != 0xD));

buf[read] = '\0'; return read;

}

This function can be exploited by sending more data than the 

size of the buffer, overflowing the end of the buffer and 

compromising security. The impact includes attacker code 

execution by overwriting the link register, with other impacts 

including PIN bypass and leaking sensitive data.

In order to prevent this vulnerability, a secure device would only 

accept as much data as it has room in its buffer to store. This 

can be accomplished by defining a fixed-width struct to 

represent the format of the data, such as the structs used in our 

team's design, and only reading data up to sizeof(struct). By 

implementing this fix, the buffer overflow vulnerability can be 

eliminated.

Defensive Highlight

Spartans
Michigan State University

Adrian Self, Udbhav Saxena, Felipe Allevato, Michael Umanskiy

Advised by: Dr. Qiben Yan, PhD

April 24, 2023

One defensive measure we would like to highlight in our design 

is the use of digital signatures with elliptic curve cryptography. 

The goal is to establish authenticity and integrity, so that 

attackers can neither forge nor modify protected data.

One way we used signatures was to securely package features 

for a car. This is represented by the following process, where the 

host_privkey is the manufacturer private key:

We also used ECDSA for the fob to sign the unlock challenge 

issued by the car in order to validate unlock requests:

This defensive measure proved extremely effective, preventing 

other teams from enabling unauthorized features or unlocking 

cars without an authorized key fob. As a result, we earned many 

defensive points, and ended with one of the highest defensive 

scores out of all the teams.

In the future, we would improve the entropy source of the 

challenge generation to further decrease the possibility of replay 

attacks.

Offensive Highlight

Design Overview

Our design uses a public-key model. Each car has a public key 

in EEPROM, while the corresponding private key and pairing 

PIN are stored in every fob authorized for the car. The car uses 

its public key to verify that unlock requests come from an 

authentic paired fob device.

Additionally, the manufacturer also has a private key used to 

sign feature packages. Every car has the manufacturer public 

key, which it uses to verify the authenticity and integrity of 

requested features when the car is started.

References

1. Code Repository

2. Design Document

3. Process & Entity Diagrams

4. "The Fundamentals Of An Ecdsa 

Authentication System" by Analog Devices

5. "ECDSA: Elliptic Curve Signatures" by Dr. 

Svetlin Nakov, PhD

6. "Stack Buffer Overflows" by Azeria Labs

Figure 1: Solved Challenges Breakdown

https://github.com/AdnanSlef/spartans-ectf-2023
https://raw.githubusercontent.com/AdnanSlef/spartans-ectf-2023/prepare_v/Spartans_Design.pdf
https://raw.githubusercontent.com/AdnanSlef/spartans-ectf-2023/prepare_v/Spartans_Visualize.pdf
https://www.analog.com/en/technical-articles/elliptic-curve-digital-signature-algorithm-explained.html
https://www.analog.com/en/technical-articles/elliptic-curve-digital-signature-algorithm-explained.html
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages
https://azeria-labs.com/stack-overflow-arm32/

	Slide 1

