
Stack Leaks: Boards with flags can only run signed firmware 

images. However, the attacker can flash any correctly signed 

firmware at any point on the car/fob. By flashing a vulnerable 

and a victim firmware on the car/fob, we leveraged the vulnerable 

firmware to extract sensitive data left behind from victim firmware 

images. This attack is shown in the figure below:

By leveraging these leaks, we successfully extracted private keys 

and pairing pins on the test boards. However, this attack did not 

work on keyed boards since the bootloader clears the SRAM 

and removes any sensitive data left by the victim team.

b01lers
Purdue University

Siddharth Muralee, Muhammad Ibrahim, Jacob White, Bo-Shiun Yen, Ashwin Nambiar, Alan Ma

Advised by: Dr. Antonio Bianchi, Dr. Aravind Machiry

April 24, 2023

EEPROM Layout Randomization (ELR): Our manufacturing 

process involves the creation of a randomized EEPROM 

layout for each car produced. This security measure ensures 

that any attacker who gains access to the EEPROM will be 

unable to discern the location and content of stored data.

Binary Layout Randomization (Compile-Time): We believe 

that modifying our defense strategy to encompass randomized 

layout for other sections, such as the .text and .stack, would 

have further strengthened our defenses. This would have 

resulted in a more formidable challenge for teams seeking to 

mount successful attacks [3,4].

References

1. https://ascon.iaik.tugraz.at/

2. NIST SP 800-90A Rev. 1

3. https://css.csail.mit.edu/6.858/2013/projects/an24021-sa23885.pdf

4. https://phrack.org/issues/49/14.html

Victim Team 

Stack

Sensitive Data

Vulnerable 

Team Stack

SRAM

Vulnerable 

Team Image
Sensitive 

Operation

Victim Team 

Stack

SRAM

Victim Team 

Stack

Sensitive Data

SRAM

Defensive Highlight Offensive Highlight

Design Overview

Stack

CAR 1

Empty

Text

Data

Empty

CAR 2

Stack

Data

Text

Text

CAR 3

Stack

Empty

Data

Binary Layout 

Randomization 

in car firmware

 Define a comprehensive threat model,

 especially for buffer overflows and side-channels

 Avoid over-engineering our protocols,

 to reduce risk of introducing vulnerabilities

 Limit the impact and scope of exploits,

 even if compromise does occur

Design Philosophy

Attacker Goal /

Capability

Brute forcing 

pairing PIN

Unauthorized

car unlock

Unauthorized

car features

Unauthorized fob 

duplication

Access to car No PIN on car
Symmetric

keys on car/fob

Unique

feature passwords
No PIN on car

Temporary fob access Delay
Unique challenge-

response

Unique

feature passwords

Salt-then-hash pairing 

PIN

Access to car 

with features
No PIN on car

Symmetric 

keys on car/fob

Unique

feature passwords
No PIN on car

Protocol Overview

Car

Unlock

Randomized challenge-response by car to fob

Symmetric key AEAD Encryption using Ascon

Fob

Pairing

Feature

Package

Salted and Hashed 6-digit pairing PIN
Persistent 4 sec. timeout on each PIN attempt

Unique 32-bit feature password for each car
Salted and Hashed feature stored on car

Attacks

Buffer Overflow : We wrote exploits to leak flags

and pins from various teams.

Replay Attacks : Weak or predictable random 

number generation allowed replay attacks.

Shared Secrets : Shared secrets allowed reusing 

fobs on other cars.

Brute Force : No limits on the number of attempts 

allowed to brute force the PIN on the fob.

https://ascon.iaik.tugraz.at/
https://css.csail.mit.edu/6.858/2013/projects/an24021-sa23885.pdf
https://phrack.org/issues/49/14.html

	Slide 1

