b01lers

Purdue University

Siddharth Muralee, Muhammad Ibrahim, Jacob White, Bo-Shiun Yen, Ashwin Nambiar, Alan Ma Advised by: Dr. Antonio Bianchi, Dr. Aravind Machiry

April 24, 2023

Design Philosophy

Define a comprehensive threat model,

especially for buffer overflows and side-channels

Avoid over-engineering our protocols, to reduce risk of introducing vulnerabilities

Limit the impact and scope of exploits, even if compromise does occur

Protocol Overview

Car	Randomized challenge-response by car to fob
Unlock	Symmetric key AEAD Encryption using Ascon
Fob	Salted and Hashed 6-digit pairing PIN
Pairing	Persistent 4 sec. timeout on each PIN attempt
Feature	Unique 32-bit feature password for each car
Package	Salted and Hashed feature stored on car

Attacker Goal / Capability	Brute forcing pairing PIN	Unauthorized car unlock	Unauthorized car features	Unauthorized fob duplication
Access to car	No PIN on car	Symmetric keys on car/fob	Unique feature passwords	No PIN on car
Temporary fob access	Delay	Unique challenge- response	Unique feature passwords	Salt-then-hash pairing PIN
Access to car with features	No PIN on car	Symmetric keys on car/fob	Unique feature passwords	No PIN on car

Shared Secrets : Shared secrets allowed reusing fobs on other cars.

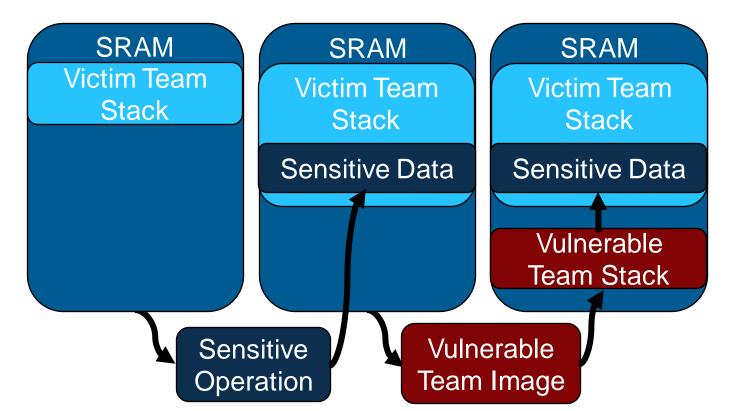
Buffer Overflow : We wrote exploits to leak flags and pins from various teams.

Brute Force : No limits on the number of attempts allowed to brute force the PIN on the fob.

EEPROM Layout Randomization (ELR): Our manufacturing process involves the creation of **a randomized EEPROM layout** for each car produced. This security measure ensures that any attacker who gains access to the EEPROM will be unable to discern the location and content of stored data.

CAR 1	CAR 2	CAR 3	
Stack	Empty	Text	
Text	Data	Empty	Binary Layout Randomization
Empty	Stack	Stack	in car firmware
Data	Text	Data	

Binary Layout Randomization (Compile-Time): We believe that modifying our defense strategy to encompass **randomized layout** for other sections, such as the *.text* and *.stack*, would have further strengthened our defenses. This would have resulted in a more formidable challenge for teams seeking to mount successful attacks [3,4].


References

- 1. <u>https://ascon.iaik.tugraz.at/</u>
- 2. NIST SP 800-90A Rev. 1

Replay Attacks : Weak or predictable random number generation allowed replay attacks.

Contensive Highlight

Stack Leaks: Boards with flags can only run signed firmware images. However, the attacker can flash any correctly signed firmware **at any point** on the car/fob. By flashing a vulnerable and a victim firmware on the car/fob, we leveraged the vulnerable firmware to extract sensitive data left behind from victim firmware images. This attack is shown in the figure below:

By leveraging these leaks, we successfully extracted private keys and pairing pins on the test boards. However, this **attack did not work on keyed boards** since the bootloader clears the SRAM and removes any sensitive data left by the victim team.

- 3. https://css.csail.mit.edu/6.858/2013/projects/an24021-sa23885.pdf
- 4. https://phrack.org/issues/49/14.html