
Brute Force Pairing Pin
• Many teams failed to include brute force protections, or had

poor protections that can be bypassed
• Sending pin combinations across UART for all different 6-

character pin combinations
• Use the fob as an oracle, since it will return early upon a

wrong pin and would continue execution otherwise
• Continuously prompt to “pair” so long as the pin is wrong

Classic Buffer Overflows
• Many teams had overlooked the built in uart_readline

function that potentially allow for reading in an arbitrary large
number of bytes prior to termination upon a newline

• Lead to potential buffer overflows, changing local variables
to potentially edit the state of the fob during operations like
pairing or enabling of new features

• Multiple variables could be modified via this method

Attack PoC
• Connect to fob bridge using netcat or python
• Send a lot of bytes!

Did it work? (Spoiler: Maybe!)
• All attacks described are theoretical and yet to be proven
• They are plausible attacks inferred from pure static code

review and analysis. No successful attacks were performed
on actual devices (yet).

Possible fixes
• Perform input length checking for all areas of user input
• Store number of wrong attempts in flash (or other permanent

memory regions) to prevent brute force or reset attempts

Defensive Highlight

Wh1t3h4t5
Singapore Management University

Cheah King Yeh, Won Ying Keat
Advised by: Mr Lee Yeow Leong

April 24, 2023

56%

41%

3%

Figure 1: Points Breakdown

Defensive Design Phase Misc

Authenticated Key Exchange Protocol
• XChaCha20-Poly1305 for Authenticated Encryption
• X25519 for shared secret key derivation, EdDSA for signing

data and Blake2b for hashing operations
• Random number generation utilized entropy gathered from

clock timing for initializing barriers in hardware (dsb, isb)
• Developed a protocol similar to SIGMA1 for AKE used during

fob pairing process
1. Checking signature of paired fob’s (PF) long term

public key ensures the authenticity of key
2. Generates ephemeral keys for DH key exchange
3. Shared key derived using the formula:

Key1 || Key2 = H(shared_secret || PF’s temp pk || UPF’s temp pk)
4. PF will prove its identity by signing and encrypting

Ekey1(“PU” || signPF_longterm_SK(PF temp pk || UPF temp pk))
5. Similarly, the unpaired fob performs the operation
Ekey1(“UP” || signUPF_longterm_SK(UPF temp pk || PF temp pk))

6. Brings benefits like Perfect Forward Secrecy

Did it work?
• Seems like it did. We managed to secure our flags for

passive unlock and leaked pairing pin

Future Considerations
• Adopt other more widely used protocols for AKE
• Put in place brute force protection to prevent total protocol

bypass!

Offensive Highlight

Design Overview
• Utilized XChaCha20-Poly1305 for authenticated encryption

to ensure integrity and confidentiality
• Adopted a Trusted-Third-Party (TTP) scheme to sign

packages and keys to reduce probability of MiTM and
impersonation attacks

• Implemented an approach similar to the SIGMA protocol for
Authenticated Key Exchange for secure fob pairing

References
1. https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1495/1495.pdf

https://www.iacr.org/cryptodb/archive/2003/CRYPTO/1495/1495.pdf

