
Our primary attack vector was a replay attack predicated on the
car providing predictable nonces for the unlock command in
some designs. If the fob does not verify with the car when it
receives a nonce, any plaintext nonce can be provided for the
fob to assemble a response packet. This allowed us to replay
valid unlocks we captured, and can used this to gain the
‘temporary fob access’ and ‘passive unlock' flags. Additionally,
for the enable feature flag, it was discovered if a plaintext
payload of form featurenum+carid is sent to the fob as the
nonce, the fob will return the corresponding ciphertext used to
unlock that feature. Then, sending this ciphertext back to the
paired fob enables the feature on the fob.

Additionally, the reference implementation had a buffer overflow
in the uart_readline(); allowing attackers to write arbitrarily large
messages to the buffer. This in turns lets an attacker overwrite
the saved link register and gain control of the program counter
(see Figure 2). While several designs were vulnerable, we
could not implement this due to time constraints.

To mitigate the buffer overflow attack, implementers should add
bounds checking to the loop in main which handles polling for
uart commands. This is done by checking the loop counter
against the buffer size on every iteration of the loop to ensure
data input does not exceed the buffer size. Once the buffer is
full, the loop must exit and the buffer be cleared before the fob
can poll for another UART command.

Defensive Highlight

Ret2Rev
Texas A&M University

Abhishek Bhattacharyya, Bode Raymond, Glenn Fitzpatrick, Liam Haber, Matthew Le, Nathan Nguyen

Advised by: Dr. Martin Carlisle

As data needs to be accessed on the device, it is decrypted
into a buffer in SRAM along with its hash. At time of use, the
integrity of the data is verified using the hash. This provides
strong security for data stored on SRAM, mitigating hardware
attacks such as flash trojans. Short random delays during code
execution are also used to make hardware attacks that rely on
precise timings much more difficult to accomplish.

Throughout the firmware design, special attention was paid to
ensure all required security features and exploit mitigations met
each aspect of CIA triad (Confidentiality, Integrity, and
Availability) within the rules of the competition framework.

One area where flaws may be present is in cloning attacks.
Without hardware attestation, traditional cloning attacks on the
fob are difficult to mitigate. Further investigation is needed to
determine if a unique hardware fingerprint can be acquired to
implement mitigations against cloning.

Offensive Highlight

Figure 2: Buffer Overflow Exploit

Design Overview

Unlocking
● Each car is intended to have 2 unique keys, one of which is

for ensuring the legitimacy of challenges so that fobs don’t
solve arbitrary ciphertexts, and so that it can verify
responses in the challenge-response system.

● Fob authenticates w/ the car in a challenge-response
system which verifies fob has the requisite paired key.
ONLY after successful authentication, car sends unlock flag
and enabled features message to host tools. See Figure 1.

Security Requirements
● Challenge-response system is used to ensure only paired

fobs can unlock the car w/ the correct computed response.
● This mitigates attacks from non-authentic fobs as well as

replay attacks. Attempting to replay the unlock command
will issue a new challenge from the car, which can only be
completed using the paired key from an authenticated fob.

● Package contents of fob features are hashed and signed
with a private key to verify authenticity of the package.

● Each fob verifies the carID of a loaded package matches
the fob’s own carID to prevent mix-and-match attacks.

● There is a timeout to prevent PIN brute-force. When a
pairing attempt fails, the fob will time out for 5 seconds.

Figure 1: Car/Fob Communication and Host Tools Workflow

Listening for
Challenge,
timeout 1s

Paired Fob Car

Unlock CMD

Nonce

Listening
for CMD

Assemble
response
packet Response

Listening for
response, timeout
after n cycles

Flag and
enabled-features

Verify
response

Host-tool

