
1. A brief summary of some of the attacks that your team
developed

○ Taking advantage of recurring use of keys
generated via global secrets

○ Feeding all possible pairing PINs into the
paired fob from a computer

○ Looking at copies of global secrets in the fob0
unencrypted binary (particularly if
global_secrets.txt was stored directly in
EEPROM as in the reference design)

■ Using such extracted secrets to build a
deployment that shared global secrets
with the attack deployment and then
using this deployment to build and load
new features

2. Highlight one attack and explain what security vulnerability
the attack exploited and why the attack was (or wasn’t)
successful. You should explain your work in enough detail for
the reader to reproduce the attack (code snippets are
allowed).

○ In several designs, the keys used were global
rather than per-car. This meant that the fob0
image provided could be used to unlock cars
1-4 with no further changes.

3. A proposed fix to the code that would prevent your attack
from working. The fix should be described in enough detail
for the reader to implement themselves.

○ Generating different keys, ensuring global
secrets are distinct from car secrets, etc

Defensive Highlight

Tufts
Tufts University

Elliot Bonner, Felipe Camargo, Adrien Lynch, Harshdeep Komal, Rusny Rahman
Advised by: Ming Chow

April 24, 2023

1. Security measures in our design
○ Tiny-AES library to encrypt & decrypt random challenge

exchanged between car & fob, to confirm shared key
valid before unlock

○ Incorporating random number generation via
microcontroller timers (unique seed) as well as seed data
in EEPROM
■ To seed the RNG, the existing EEPROM seed plus

timer data is used, then a new set of random data
is written to EEPROM

○ Verifying message length before loading into buffer
(prevent buffer overflow)

○ Encrypting a feature packaging message as one AES
block containing the feature in the last 8 bits of the
message and the leftmost bits of the SHA256 hash of the
feature number in the remaining bits of the message.

○ Using constant-time checks when comparing data
2. Highlight one defensive feature, explaining why you decided

to include it and what it is (or was) supposed to accomplish
○ The feature packaging format encrypts features using a

car-specific key, validated by the car rather than the fob.
This ensures the feature is only valid on one car; on any
other, the decrypted feature will be garbage. By including
a hash of the feature, the car can verify with a high
degree of certainty that the feature was not encrypted
using a different key (this acts as a MAC).

Offensive Highlight

Design Overview

Our design uses an
AES-based challenge
response system; the
challenge is randomized
based on timers and
seed data in EEPROM
(replaced every power
cycle).

Features are protected
by computing a SHA256
hash of the feature
number, then encrypting
using a car-specific key.
The car decrypts the
feature package and can
use the hash to confirm
validity.

References
1. http://burtleburtle.net/bob/rand/isaacafa.html
2. TI Microcontroller Datasheet
3. TI Documentation
4. tiny-AES-C
5. https://github.com/B-Con/crypto-algorithms

