
Given additional time, we would execute an attack model 
consisting of the following steps:
- We will dump the firmware of the design on the board by 

using tools like binwalk, debugger, etc.
- With access to the binaries, we can extract pins used to 

unlock the car and other secrets. We will be able to carry out 
a spoofing attack to mimic a paired fob’s functionality. If a 
spoofed/altered signal match that of a paired fob, the car 
will unlock.

As an example, one of the design's car firmware compares a 
pre-calculated sha256 hash with the received fob message 
buffer, which contains a sha256 hash of the password and car 
id. The unlock function does not depend on any encrypted 
message. We can read the calculated hash value using a 
debugger to extract this hash value from the sha256_test() 
function in car firmware. Then using host tools, we can send 
the hash value to the car and unlock the car.

Preventing an attacker from reading a paired fob’s binaries and 
secrets prevents them from mimicking a paired fob’s 
functionality. This can be done by encrypting the code 
and implementing read-write protection . If the unlock function 
is encrypted such that the attacker does not have access to the 
hash of the password, this attack can be avoided.

Defensive Highlight
We chose to include a three-way handshake to increase the 
security of the message and overall system. We chose a 
symmetric encryption scheme to balance computation tradeoff 
and security posture. Our security design included several 
design principles such as: Principle of Economy, Principle 
of Least Privilege, Principle of Open Design, Principle of 
Complete Mediation [2].
Our design used HMAC Framework SHA-1 to authenticate 
message integrity and generate a message digest to include to 
messages between the Host and Fob. During the pairing 
operation, the paired fob stored the car ID and feature 
number. The paired fob shared keys to decrypt the 
XOR encrypted packaged feature by the Host Tools.

Authentication
Our design was based on Symmetric encryption with the 
shared key pre-shared during the build operation. This key was 
used for encrypting and decrypting each message using tiny-
AES.
This mechanism could be made better by adding HMAC into 
the enable feature. Our authentication methods can be made 
better by adding asymmetric encryption. The random number 
we generated was pseudorandom.

Figure 2 shows the message transfer protocol between the 
paired fob and unpaired fob. The full description can be found 
in our design document.

Offensive Highlight

Design Overview
A high-level overview of our design is shown in Figure 1, 
highlighting the security mechanisms used in each step. The 
security goals are implemented using these security 
mechanisms:
• HMAC Framework SHA-1 for authentication of paired fob 

and pairing pin
• Car verifies the message integrity
• Encryption of all secrets stored in the ROM
• Both the car and fob use a symmetric encryption key

• Pre-shared key for encrypting each unlock message 
using tiny-AES [1].

• The car decrypts a fob’s message using tiny-AES
• Verification the manufactured packages

References
1. Kokke. (2017). tiny-AES-c. GitHub. Retrieved 

January 20, 2023, from 
https://github.com/kokke/tiny-AES-c

2. Bishop, M. (2018). Computer Security: Art and 
Science, 2nd edition. Addison-Wesley 
Professional PTG. Chapter 14, p. 457.

2023-UCCS1
University of Colorado Colorado Springs

Minhajul Alam Rahat, Vijay Bannerjee, Smita Khapre, Pi Chandramouli, Zainab Olalekan, Nick Waggoner, Sydney Petrehn,
Omolade Ikumapayi, Noah Rodgers, Mark Stidd, Jordon Scott, Uchenna Ezeobi, Connor Gurule, Katrina Rosemond

Advised by: Professor Gedare Bloom, PhD
April 20, 2023

Figure 1: Design Overview

Figure 2: P-U Message Transfer Protocol

https://github.com/kokke/tiny-AES-c

