
• During the design and built phase, the most fundamental 
question would be the validation between the cars and key 
fobs. There were 6 cars total in which each have different 
car id. 

• If so, in reality, a paired key fob should not be able to have 
access to other cars that are the same model but different 
cars. If in the car firmware does not validate car id sent by 
the key fob, then any paired key fob should be able to 
unlock any cars that have the same firmware configuration 
(ie: same model or year).

• Therefore, without validation of the car id, security 
requirements (SR) that impact most in this simple task of 
loading a paired fob to unlock a car would be Car 1, Car 3 
and Car 4. The unlock is completed without much effort.

• The offensive strategy carried out in this competition due 
were not sophisticated, however very effective. To counter 
this, all is needed is to implement car id validation to 
unlockCar() as well as StartCar(). 

• Although understand that the goal of the competition for SR 
would be based upon reverse engineering and testing the 
implementation of cryptography/communication, however, 
not meeting SR1 would have an avalanche effect on all 
other SRs.

Defensive Highlight

UCCS2
University of Colorado (Colorado Springs)

Ken Lew, Sourav Purification, Arijet Sarker
Advised by: Dr. Sang-Yoon Chang, PhD

April 24, 2023

Figure 1: Solved Challenges

Leaked Pairing Pin New Car Unlock Passive Unlock

• Since the unlockCar() by default validates only ”password”, 
validation measures needed to be put in place like “car id” in 
order for the car to recognize its own id that a paired fob is 
only able to unlock the specific car. Hence, “car id” is 
included in the validation. 

• For more measures, hashing and encryption should be 
included. Due to our own constraint timeline, we were only 
able to implement hashing. This comes with security 
vulnerabilities as our car id and password are hard coded. 

• If time were not an issue along with technical knowledge 
during the build phase, we would have implemented this 
design:

In this design we will use encryption like TinyAES [2] to encrypt 
the nonce sent by key fob. Once car received the nonce, it will 
send an acknowledgement where key fob will increase the 
base counter by one. Likewise for car, it will then hash the 
counter along with car id, password and nonce. When key fob 
have the same computation and send the hash for car to 
validate, it will then unlock or start the car depending on the 
function.

Offensive Highlight

Design Overview
• The protocol is simple hashing of the password and car id 

that both are computed in the key fob and car. When the key 
fob initiated the unlockCar() function, it will send the hash to 
the car for validation.

• SHA256 [1] was used in our design and both firmware would 
have similar implementation as following:

References
1. https://github.com/B-Con/crypto-algorithms
2. https://github.com/kokke/tiny-AES-c

https://github.com/B-Con/crypto-algorithms
https://github.com/kokke/tiny-AES-c

