
Attacks that our team developed:

○ Timing attacks to break timing-reliant RNG
○ ROP chains to exploit buffer overflows
○ Replay attacks with deployment-wide secrets
○ Message forging with secrets leaked in features
○ Nonexistent or improperly placed delays allowing PIN

brute force
○ Misuse of strncmp for memory comparisons allowing

comparisons to be bypassed
○ Custom key exchange protocol allowing decryption of

all traffic and forging of unlock requests
○ Lack of authentication or encryption allowing enabling

of features

A couple of teams use the internal temperature sensor readings
as part of their RNG. This sensor is read using the onboard
ADCs, which rely on two reference pins VDDA and GNDA. By
disconnecting GNDA from the board and shorting it with VDDA,
we are able to lower the ADC reading by 0x200.
This lowers the required temperature to saturate the ADC
reading from around 145°C to 117°C. One team uses a Von
Neumann extractor to generate random numbers, so saturating
the ADC reading alone would not work. Instead, we can toggle
a relay connecting VDDA and GNDA at the sample rate of the
ADC, ensuring that readings will alternate between saturated
and non-saturated, hopefully producing a predictable value.
In the end, we didn’t have the time to carry out the attack.
A variety of different RNG sources like we used in our design
would largely mitigate this sort of attack.

Defensive Highlight

UCSC
University of California, Santa Cruz

Brian Mak, Steven Mak, Jeffrey Zhang, Victor Ho, Jackson
Kohls, Nancy Lau, Iakov Taranenko, Stephen Lu, Chiara Knicker, Eya Badal Abdisho

Advised by: Professor Alvaro Cardenas
April 24, 2023

Security measures we decided to include in our design:

○ Rust was used to ensure memory safety
○ RNG used four sources of entropy to ensure secure

and unpredictable random numbers
○ Widely-used Rust crates were chosen to ensure the

security of cryptographic functions used
○ Reusable abstractions for security-critical code used,

such as built-in encryption in communication stack
○ Code review and dependency auditing done to prevent

errors and ensure dependencies were up-to-date
○ Stack space was moved below .data and .bss sections

to prevent stack overflows from leaking sensitive data

We decided to include a variety of sources of entropy for
redundancy in case one or more of our sources were able to be
controlled by an attacker. We acquire approximately 256 bits of
entropy from each of our sources: a device-unique seed base,
clock drift, the temperature sensor, and uninitialized memory.
We then hash the input with SHA3-256 to whiten it. This
worked very well in our favor considering that the temperature
sensor can be potentially controlled. Additionally, the secure
bootloader zeros out the SRAM on startup, rendering
uninitialized memory useless as well. Despite all of this, we still
have working sources of entropy that are secure. In the future,
we could build upon this by putting the output of each entropy
source through a Von Neumann extractor before hashing to
gather a precise number of bits of entropy. This would provide
us protection against entropy source tampering that attempts to
reduce entropy.

Offensive Highlight

Design Overview
Unlock: Challenge-response protocol with a randomly
 generated number as the challenge

Pairing: ECDHE to generate keys for the challenge-response
 protocol, and increased delay after incorrect PIN

Features: Car ID & feature no. signed with manufacturer key

○ Used multiple entropy sources to ensure generation of
secure and unpredictable random numbers

○ Secure RNG combined with built-in encryption in
communication stack ensures SR1, SR2, and SR3

○ Increasing delay after an incorrect PIN makes
brute-force attack unfeasible, ensuring SR4

○ Digital signatures and including the car ID in the feature
package ensure SR5 and SR6

