
One team used the following authentication flow for unlocking
the car:
1. The fob sends an AES-encrypted random value to the car.
2. The car sends an AES-encrypted random value to the fob.
3. The devices XOR the random values to get a session key.
4. The fob uses the session key to encrypt an unlock packet

and sends it to the car.
5. The car decrypts the packet, checks its contents, and

unlocks the car if the contents are correct.

If we send the car the exact same message that it would send,
it would derive a session key of all 0’s. We could then send an
unlock packet encrypted with this known key, thereby breaking
the system’s security. Predicting the car’s message is possible
because of the use of a static seed for the RNG, which could
be reset by re-flashing the car firmware onto the device.

To exploit this flaw, we captured the value the car would send
to the fob, re-flashed the car’s firmware, and replayed this
value, followed by a properly encrypted unlock packet.

There are several immediate fixes for this flaw, all of which
should be applied:
● Combine the random values with a proper KDF
● Use other sources of entropy to prevent RNG state reset.

However, a better fix would be to adopt an authentication
protocol that provides proper integrity and authenticity
guarantees for transmitted messages.

Defensive Highlight

UMazda
UMass Amherst

Ryan Lee, Ibrahima Keita, Dung Nguyen, Gilbert Hoermann, Sergio Ly
Advised by: Prof. Wayne Burleson

April 24, 2023

Our design uses the following security features:

● Modification of SCRAM-SHA256 (“SCRAMish”) for mutual
authentication, used in car unlocking and fob pairing.

● p256 ECDSA signatures for features.
● RNG for SCRAMish, initially seeded from a random seed in

the EEPROM and reseeded based on human timings.
● MPU enabling to disable all code execution from SRAM.

These are the changes we made to create SCRAMish:

● We used argon2id for deriving a salted hashed password
instead of PBKDF2 and used hardcoded parameters
instead of exchanging them during authentication.

● We omit negotiation of channel binding.
● All the messages and fields are fixed-size.
● We extract a protocol_key for channel binding

HMAC-SHA256(SHA256(client_key), "PARED session key"
|| client_key || auth), used as an HMAC key for future
messages in that session.

● The client confirms authentication success by sending an
empty MAC-protected success message to the server
instead of signaling failure closing the connection as would
be done with TCP in a non-embedded system. (The server
would have confirmed authentication by sending the
ServerSignature, so the other direction is unnecessary.)

The shared secrets to be authenticated were derived with
HMAC, mixing global secrets with the car ID and pairing PIN.
We also ensured that the car and paired fob did not have global
secrets that they did not need.

The protocol was cryptographically secure but did not provide
complete protection due to insufficiently secure RNG. We used
a ChaCha based RNG but did not reseed it until after the first
complete attempt at a protocol. Unfortunately, this meant that
reflashing the board images would completely reset the RNG,
allowing for state reset based attacks. To fix this, we would
need to add more entropy sources and mix them in
immediately before using the RNG.

Offensive Highlight

Design Overview
Our design used a modified version of SCRAM-SHA256 to
perform mutual authentication and p256 ECDSA signatures to
authenticate features. We generated the shared secrets used in
SCRAM-SHA256 by using HMAC to combine a base secret
and the car ID and PIN. We achieved channel binding for
subsequent post-authentication messages by deriving a
protocol key from the SCRAM exchange and using that as an
HMAC key. Besides of these cryptographic features, we also
used the MPU to completely disable code execution from RAM.

References
1.

