
Although we never made it to the attack phase, we discussed
different methods we would have used to attack other systems.
A man in the middle attack to intercept transmissions from the
fob to the car would have been the place to start. Some teams
discussed physical attacks including de-soldering the eprom
and ‘reading it manually. While potentially effective, the limited
amount of boards available to us limited our thinking to less
invasive methods. Replay attacks are very effective against
real car-fob pairs, given that the signal is captured when the fob
is out of range from the target fob, so the car doesn’t know that
the code has been burned from the rolling code. A similar
method could be attempted in this competition where we
capture a UART signal without the target board connected,
then replay it to gain access.

Defensive Highlight

Key Fob Enthusiasts
U.S. Air Force Academy

C2C Jabari Bowen, C1C Patrick Carattini, C1C Kevin Carrig, C2C Chanon Mallonoo, C2C Payton Rawson
Advised by: Dr. Stanley Baek, PhD

April 24, 2023

Due to hurdles with the development environment, we never
submitted a design for other teams to attack. Given the time
we would implement a rolling key system, similar to what real
car fob pairs use, to make our system resistant to replay
attacks.

To account for multiple key fobs and cars we would like to
substitute the symmetric key encryption for a pub and private
key infrastructure, or a hybrid of the two. Each element (car,
fob, host) would have its own randomly generated private and
public key pairs on boot using systick, allowing the system to
track which car & fob are communicating and have burned
codes from the rolling code.

Offensive Highlight

Design Overview
Our design called for using symmetric keys stored in host
secrets to facilitate encryption for car, fob, and host
communication. We chose AES encryption because the library
was already provided in the example repo which streamlined
implementation. A big challenge for us came in implementing
encryption on host-fob communications, since the fob was build
in C and the host was built in python. The heterogeneous
development environment raised issues since the way the C
library encrypted a message may not be the exact way that the
python library expected for decryption. Our end solution was
instead of using two different libraries (tiny-aes-C and pyaes),
we used tiny-aes-c and its cython wrapper for compatibility.

References
Fatima, S., Rehman, T., Fatima, M., Khan, S., & Ali, M. A. (2022). Comparative analysis of AES and RSA algorithms for Data Security in cloud computing. IEEC 2022.

https://doi.org/10.3390/engproc2022020014

https://doi.org/10.3390/engproc2022020014

