
Before the attack phase even began, we identified a vulnerable 
function in the reference design that we suspected many teams 
would use without any additional review: uart_readline [3], 
which is practically equivalent to the infamous gets [4] function 
from the C standard library that allows for buffer overflows.

The typical attack flow was as follows:
1. Identify the path of execution that leads to a call to 
uart_readline. For several designs, this was found in the fob 
firmware – usually in the pairing or feature-enabling code.
2. Load an unprotected target firmware image onto an unkeyed 
board, and work within a debugger to identify the number of 
bytes needed to overwrite the saved return address. In the 
process, we would also identify any additional addresses we 
needed, such as the location of the buffer containing our input.
3. Develop an exploit payload to dump data (firmware or 
EEPROM contents) over the host UART connection. A firmware 
dump was often sufficient to obtain all the information we 
needed (such as fob pairing PINs.) Firmware dumping could be 
achieved using a single call to uart_write (also from the 
insecure example), since the firmware is mapped into memory.

This attack was successful (albeit more difficult) even against 
designs that leveraged the Memory Protection Unit (MPU) to 
prevent stack shellcode execution. Those designs could be 
defeated using return-oriented-programming, or ROP chains, in 
which existing code was bent to our will.

This attack could be prevented by modifying uart_readline to 
perform bounds checking, à la fgets [5] in C. As it turns out, 
some teams did just that, forcing us to find other attack vectors.

Defensive Highlight

TheMuffinMob
Worcester Polytechnic Institute

A. Ames, J. Backer, K. Jesse, K. Kaufman, H. Kyriacou, I. Robinson
Advised by: Prof. Robert J. Walls

April 24, 2023

A defensive feature that truly set our design apart from almost 
all of the others (besides our use of Rust) was our protection 
against fault injection attacks. While we recognized the difficulty 
of executing a fault injection attack in practice, we felt it was 
prudent to at least consider the possibility of one occurring. A 
successful fault injection attack – however unlikely - could be 
disastrous, potentially compromising the system and breaking 
one (or more) of its security goals.

To mitigate these attacks, we made use of “double-down if-
statements”, or “double-downs” for short (see: 
embed/src/security/anti_glitching.rs.) Double-downs 
evaluate the condition multiple times in order to detect any 
unusual behavior. If a fault is detected, the entire system aborts 
and requires a reset. This is a low-overhead method of 
managing fault injection attacks that has some scientific 
backing [2], although it is not a complete solution.

Double-downs worked very well for us, but in the future, we 
may seek to introduce supplementary countermeasures, such 
as random delays to thwart attacks that rely on precise timing.

Offensive Highlight

Design Overview
All board-to-board traffic was encrypted and authenticated 
using XChaCha20-Poly1305, using symmetric keys unique to 
each car/fob pair (in order to ensure that only the right fobs 
could communicate with a car - see SR1 [1] + SR4) as well as 
random nonces (to prevent* replay attacks - see SR2 + SR3), 
as shown in figure 1.

During pairing, an unpaired fob and paired fob would perform a 
key exchange in order to generate a symmetric key for future 
use. This ensured forward secrecy, keeping their 
communications secure against sniffing attacks.

Packaged features were signed with a manufacturer-held, car-
specific private key to ensure authenticity (see SR5 + SR6.)

Some secrets (such as pairing PINs) were treated with special 
care, being fed into key derivation functions in order to 
generate keys that could be used to encrypt “success 
messages” at build time and decrypt/verify those messages at 
runtime. Since the original secrets would be destroyed or 
otherwise inaccessible to the attacker, our design was 
extremely secure against secret-extraction attacks.
* This was not achieved, because our RNG did not incorporate environmental noise. As a result, it would produce 
the same output sequence after the firmware was reinstalled. We intend to improve upon this for our future designs.

References
1. Challenge Design Summary v1.1, pp. 16
2. Spensky et al., “Glitching Demystified”

3. uart.c line 104
4. C library function - gets()

5. C library function - fgets()

Figure 1: Encrypted protocol

https://sites.cs.ucsb.edu/%7Evigna/publications/2021_DSN_Glitching.pdf
https://github.com/mitre-cyber-academy/2023-ectf-insecure-example/blob/main/car/src/uart.c#L104
https://www.tutorialspoint.com/c_standard_library/c_function_gets.htm
https://www.tutorialspoint.com/c_standard_library/c_function_fgets.htm

	Slide Number 1

